Add like
Add dislike
Add to saved papers

Ginsenoside Rg3 Decreases NHE1 Expression via Inhibiting EGF-EGFR-ERK1/2-HIF-1 α Pathway in Hepatocellular Carcinoma: A Novel Antitumor Mechanism.

Na + /H + exchanger 1 (NHE1) plays a vital role in the oncogenesis and development of hepatocellular carcinoma (HCC) and has been regarded as a promising target for the treatment of HCC. Ginsenoside Rg3 (Rg3), a bioactive ginseng compound, is suggested to possess pleiotropic antitumor effects on HCC. However, the underlying mechanisms of Rg3 suppressing HCC remain unclear. In the present study, we uncovered a novel antitumor mechanism of Rg3 on HCC by decreasing NHE1 expression through in vivo and in vitro studies. Mechanistically, we demonstrated that epidermal growth factor (EGF) could dramatically upregulate NHE1 expression, while increasing the phosphorylated extracellular signal-regulated protein kinase (ERK1/2) level and hypoxia-inducible factor 1 alpha (HIF-1 α ) expression. In the presence of ERK1/2-specific inhibitor PD98059, EGF stimulated HIF-1 α and NHE1 expression was obviously blocked in addition, the presence of HIF-1 α -specific inhibitor 2-methoxyestradiol (2-MeOE2) blocked EGF stimulated NHE1 expression. Moreover, results from in vivo and in vitro studies indicate that Rg3 treatment markedly decreased the expression of EGF, EGF receptor (EGFR), phosphorylated ERK1/2 and HIF-1 α . Conclusively, these findings suggested that NHE1 was stimulated by EGF, and Rg3 could decrease NHE1 expression by integrally inhibiting EGF-EGFR-ERK1/2-HIF- α signal axis in HCC. Together, our evidence indicated that Rg3 was an effective multi-targets antitumor agent for the treatment of HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app