Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Celastrol Promotes Weight Loss in Diet-Induced Obesity by Inhibiting the Protein Tyrosine Phosphatases PTP1B and TCPTP in the Hypothalamus.

Celastrol is a natural pentacyclic triterpene used in traditional Chinese medicine with significant weight-lowering effects. Celastrol-administered mice at 100 μg/kg decrease food consumption and body weight via a leptin-dependent mechanism, yet its molecular targets in this pathway remain elusive. Here, we demonstrate in vivo that celastrol-induced weight loss is largely mediated by the inhibition of leptin negative regulators protein tyrosine phosphatase (PTP) 1B (PTP1B) and T-cell PTP (TCPTP) in the arcuate nucleus (ARC) of the hypothalamus. We show in vitro that celastrol binds reversibly and inhibits noncompetitively PTP1B and TCPTP. NMR data map the binding site to an allosteric site in the catalytic domain that is in proximity of the active site. By using a panel of PTPs implicated in hypothalamic leptin signaling, we show that celastrol additionally inhibited PTEN and SHP2 but had no activity toward other phosphatases of the PTP family. These results suggest that PTP1B and TCPTP in the ARC are essential for celastrol's weight lowering effects in adult obese mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app