Add like
Add dislike
Add to saved papers

Influence of size and surface capping on photoluminescence and cytotoxicity of gold nanoparticles.

Hydrophilic and homogeneous sub-10 nm blue light-emitting gold nanoparticles (NPs) functionalized with different capping agents have been prepared by simple chemical routes. Structure, average, size, and surface characteristics of these NPs have been widely studied, and the stability of colloidal NP solutions at different pH values has been evaluated. Au NPs show blue PL emission, particularly in the GSH capped NPs, in which the thiol-metal core transference transitions considerably enhance the fluorescent emission. The influence of capping agent and NP size on cytotoxicity and on the fluorescent emission are analyzed and discussed in order to obtain Au NPs with suitable features for biomedical applications. Cytotoxicity of different types of gold NPs has been determined using NPs at high concentrations in both tumor cell lines and primary cells. All NPs used show high biocompatibility with low cytotoxicity even at high concentration, while Au-GSH NPs decrease viability and proliferation of both a tumor cell line and primary lymphocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app