Add like
Add dislike
Add to saved papers

Gastroprotective effect of araloside A on ethanol- and aspirin-induced gastric ulcer in mice: involvement of H + /K + -ATPase and mitochondrial-mediated signaling pathway.

The aim of this study was to elucidate the gastroprotective activity and possible mechanism of involvement of araloside A (ARA) against ethanol- and aspirin-induced gastric ulcer in mice. The experimental mice were randomly divided into control, model, omeprazole (20 mg/kg, orally) and ARA (10, 20 and 40 mg/kg, orally). Gastric ulcer in mice was induced by intragastric administration of 80% ethanol (10 mL/kg) containing 15 mg/mL aspirin 4 h after drug administration on day 7. The results indicated that ARA could significantly raise gastric juice volume and acidity; ameliorate gastric mucosal blood flow, gastric binding mucus volume, ulcer index and ulcer inhibition rate; suppress H+ /K+ -ATPase activity, which was confirmed by computer-aided docking simulations; inhibit the release of mitochondrial cytochrome c into the cytoplasm; inhibit caspase-9 and caspase-3 activities and down-regulate mRNA expression levels; down-regulate the mRNA and protein expressions of apoptosis protease-activating factor-1 and protein expression of cleaved poly(ADP ribose) polymerase-1; and up-regulate Bcl-2 mRNA and protein expressions and down-regulate Bax mRNA and protein expressions, thus elevating the Bcl-2/Bax ratio in a dose-dependent manner. Histopathological observations further provided supportive evidence for the aforementioned results. The results demonstrated that ARA exerted beneficial gastroprotective effects on alcohol- and aspirin-induced gastric ulcer in mice, which was related to suppressing H+ /K+ -ATPase activity as well as pro-apoptotic protein expression, and promoting anti-apoptotic protein expression, thus alleviating gastric mucosal injury and cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app