Add like
Add dislike
Add to saved papers

Transmembrane domain-mediated Lck association underlies bystander and costimulatory ICOS signaling.

The B7-family inducible costimulator (ICOS) activates phosphoinositide-3 kinase (PI3K) and augments calcium mobilization triggered by the T-cell receptor (TCR). We surprisingly found that the entire cytoplasmic domain of ICOS is dispensable for its costimulation of calcium mobilization. This costimulatory function relies on the unique transmembrane domain (TMD) of ICOS, which promotes association with the tyrosine kinase Lck. TMD-enabled Lck association is also required for p85 recruitment to ICOS and subsequent PI3K activation, and Lck underlies both the bystander and costimulatory signaling activity of ICOS. TMD-replaced ICOS, even with an intact cytoplasmic domain, fails to support TFH development or GC formation in vivo. When transplanted onto a chimeric antigen receptor (CAR), the ICOS TMD enhances interactions between T cells and antigen-presenting target cells. Therefore, by revealing an unexpected function of the ICOS TMD, our study offers a new perspective for the understanding and potential application of costimulation biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app