Add like
Add dislike
Add to saved papers

Manipulating Nutritional Conditions and Salinity-Gradient Stress for Enhanced Lutein Production in Marine Microalga Chlamydomonas sp.

Marine microalgae has great potential for lutein production with the advantage of saving fresh water resource. Thus, marine microalga Chlamydomonas sp. JSC4 is investigated as a potential lutein producer in this study. The medium types, nitrate-N and sea salt concentration are individually investigated to promote the cell growth rate and lutein production of JSC4. In Modified Bold Basal 3N medium, cell growth and lutein content are optimal at the nitrate-N concentration of 1000 mg L-1 and sea salt concentration of 2%. In addition, an innovative salinity-gradient strategy is operated to dramatically enhance biomass productivity (560 mg/L/d) and lutein content (3.42 mg g-1 ), resulting in the optimal lutein productivity (1.92 mg/L/d). Overall, this study clearly demonstrates that salinity is a significant inducer of lutein accumulation by strain JSC4 and that lutein production can be successfully optimized using the salinity-gradient strategy, which is beneficial for the outdoor large-scale lutein production in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app