Add like
Add dislike
Add to saved papers

Comparison of native myocardial T1 and T2 mapping at 1.5T and 3T in healthy volunteers : Reference values and clinical implications.

BACKGROUND: Myocardial native T1 and T2 mapping are promising techniques for quantitative assessment of diffuse myocardial pathologies; however, due to conflicting data regarding normal values, routine clinical implementation of this method is still challenging.

METHODS: To evaluate this situation during daily clinical practice the characteristics of normal values obtained in 60 healthy volunteers who underwent magnetic resonance imaging (MRI) scans on 1.5T and 3T scanners were studied. The T1 modified look-locker inversion recovery (MOLLI; 5(3)3; modified for higher heart rates) and T2 navigator gated black-blood prepared gradient-spin-echo (GraSE) sequences were used.

RESULTS: While age and body mass index did not affect relaxation times, a gender and heart rate dependency was found showing higher T1 and T2 values in females, whereas at higher heart rates a prolongation of T1 and a shortening of T2 relaxation times was found. Particularly prone to artifacts were T2 measurements at 3T and the inferolateral wall. In the individual setting mean relaxation times for T1 were 995.8 ± 30.9 ms at 1.5T and 1183.8 ± 37.5 ms at 3T and 55.8 ± 2.8 ms at 1.5T and 51.6 ± 3 ms at 3T for T2 indicating a high dependency of reference values on MRI protocol when compared to the literature. Furthermore, as presumed mean T1 and T2 values correlated in the same individual.

CONCLUSIONS: The T1 and T2 relaxation times depend on physiological factors and especially on MRI protocols. Therefore, reference values should be validated individually in every radiological institution before implementing mapping protocols in daily clinical practice. Correlation of mean T1 and T2 values in the same proband at both field strengths indicates intraindividual reproducibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app