Add like
Add dislike
Add to saved papers

Superbubbles revisited.

Background: Superbubbles are distinctive subgraphs in direct graphs that play an important role in assembly algorithms for high-throughput sequencing (HTS) data. Their practical importance derives from the fact they are connected to their host graph by a single entrance and a single exit vertex, thus allowing them to be handled independently. Efficient algorithms for the enumeration of superbubbles are therefore of important for the processing of HTS data. Superbubbles can be identified within the strongly connected components of the input digraph after transforming them into directed acyclic graphs. The algorithm by Sung et al. (IEEE ACM Trans Comput Biol Bioinform 12:770-777, 2015) achieves this task in O ( m l o g ( m ) ) -time. The extraction of superbubbles from the transformed components was later improved to by Brankovic et al. (Theor Comput Sci 609:374-383, 2016) resulting in an overall O ( m + n ) -time algorithm.

Results: A re-analysis of the mathematical structure of superbubbles showed that the construction of auxiliary DAGs from the strongly connected components in the work of Sung et al. missed some details that can lead to the reporting of false positive superbubbles. We propose an alternative, even simpler auxiliary graph that solved the problem and retains the linear running time for general digraph. Furthermore, we describe a simpler, space-efficient O ( m + n ) -time algorithm for detecting superbubbles in DAGs that uses only simple data structures.

Implementation: We present a reference implementation of the algorithm that accepts many commonly used formats for the input graph and provides convenient access to the improved algorithm. https://github.com/Fabianexe/Superbubble.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app