Add like
Add dislike
Add to saved papers

SIRT1 knockdown up-regulates p53 and p21/Cip1 expression in renal adenocarcinoma cells but not in normal renal-derived cells in a deacetylase-independent manner.

SIRT1, an NAD+ -dependent deacetylase, causes deacetylation and down-regulation of its target p53. Given that p53 is an upstream regulator of the transcription of the cyclin-dependent kinase inhibitor p21/Cip1, SIRT1 is hypothesized to play a stimulatory role in carcinoma cell proliferation. We previously reported that down-regulation of SIRT1 caused the increase in p21/Cip1 in a post-transcriptional manner, suggesting that p53 is not involved in the p21/Cip1 increase and raising the question whether SIRT1 exhibits the activity other than deacetylase. In the present study, we examined whether SIRT1 down-regulation and the inhibitor for SIRT1 deacetylase activity affects p21/Cip1 and p53 expression in renal adenocarcinoma cells and normal renal cells. SIRT1 knockdown caused an increase in p53 and p21/Cip1 protein levels in renal adenocarcinoma ACHN cells but not normal renal-derived HK-2 cells. The increase in p53 in ACHN cells is unlikely to contribute to the upregulation of p21/Cip1 expression, given that SIRT1 knockdown did not increase p21/Cip1 mRNA levels in these cells. In contrast to the SIRT1-knock down assay, SIRT1 deacetylase inhibitor did not affect p53 or p21/Cip1 protein levels in ACHN cells. Therefore, SIRT1-knockdown likely stimulates p53 and p21/Cip1 protein expression in a deacetylase-independent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app