Add like
Add dislike
Add to saved papers

Characteristics of Human Natal Stem Cells Cultured in Allogeneic Medium.

Recently, human natal dental pulp stem cells (hNDP-SCs) have been characterized in vitro and it has been shown that they satisfy criteria defining human mesenchymal stromal cells (MSCs), as proposed by the International Society for Cellular Therapy. However, these results were reached in the presence of xenogeneic expansion medium, which has the potential to alter the cells' functional capacity. To determine the validity of the previously reported hNDP-SCs characteristics for human cell therapy, we have cultured hNDP-SCs in allogeneic expansion medium. Two hNDP-SC lineages were isolated from vital natal teeth, donated by a healthy newborn female and cultured in 2% platelet rich plasma (PRP). Analysis of the phenotypic expressions, proliferation rates, viability, telomerase length and in vitro adipogenic, osteogenic and chondrogenic differentiation potentials of two hNDP-SCs lineages (Zn001 and Zn002) were performed. Both lineages displayed similar morphology, proliferation rates, adipogenic, chondrogenic and osteogenic differentiation potential. Telomere shortening by 41.0% and 13.49% occurred from 3rd till 14th passage for lineages Zn001 and Zn002 respectively. Viability of both lineages was higher than 90%. Flow cytometry demonstrated that both lineages were positive to the majority of tested markers, including markers, which were negatively, expressed when hNDP-SCs were cultured previously in xenogeneic medium. Using immune-cytochemistry the cells were shown to express beta III-tubulin, nestin, neurofilaments and Nanog. PRP used as allogeneic medium is suitable for cultivation of hNDP-SCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app