Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Effect of Gpx3 gene silencing by siRNA on apoptosis and autophagy in chicken cardiomyocytes.

Glutathione peroxidase 3 (Gpx3), as an important selenoprotein, is the most crucial antioxidant defense in cardiomyocytes. However, the role of Gpx3 in Se-deficient cardiomyocyte damage still less reported. Here, we developed Gpx3 silence cardiomyocytes culture model (small interfering RNA; siRNA) for research the crosstalk between autophagy and apoptosis. Quantitative real-time PCR and western blot analysis are performed to detect the expression of apoptosis and autophagy-related genes. MDC stain, flow cytometry, AO/EB stain, and electron microscope were performed to observe the changes of cell morphology. Our results reveal that Gpx3 suppression can significant increases in ROS (p < 0.05) levels, which further induced apoptosis through upregulated the expression of Caspase-3 in cardiomyocytes. Meanwhile, we also found that the whole process is accompanied by the occurrence of autophagy, which are promoted by inhibiting the mTOR, and increasing the expression of ATG-7, ATG-10, and ATG-12. Altogether, we conclude that the apoptotic and autophagic response machineries share antagonistic function in Gpx3 knockdown cardiomyocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app