Add like
Add dislike
Add to saved papers

Left Ventricular Strain and Relaxation Are Independently Associated with Renal Cortical Perfusion in Hypertensive Patients.

Renal perfusion, which depends on cardiac function, is a factor conditioning the work of kidneys. The objective of the study was to assess the influence of cardiac function, including left ventricular contractility and relaxation, on renal cortical perfusion in patients with hypertension and chronic kidney disease treated pharmacologically. There were 63 patients (7 F and 56 M; aged 56 ± 14) with hypertension and stable chronic kidney disease enrolled into the study. Serum cystatin C, with estimated glomerular filtration rate (eGFR), ambulatory blood pressure monitoring, carotid intima-media thickness (cIMT), echocardiography with speckle tracking imaging and the calculation of global longitudinal strain (GLS), diameter of vena cava inferior (VCI), and an ultrasound dynamic tissue perfusion measurement of the renal cortex were performed. We found that the renal cortical perfusion correlated significantly with age, renal function, cIMT, GLS, left ventricular ejection fraction (LVEF), left ventricular mass index (LVMI), diastolic peak values of early (E) and late (A) mitral inflow velocities ratio (E/A) and E to early diastolic mitral annular tissue velocity (E/E'), but not with VCI, or the right ventricle echocardiographic parameters. In multivariable regression analysis adjusted to age, only eGFR, E/E', and GLS were independently related to renal cortical perfusion (r2  = 0.44; p < 0.001). In conclusion, the intensity of left ventricular strain and relaxation independently influence renal cortical perfusion in hypertensive patients with chronic kidney disease. A reduction in left ventricular global longitudinal strain is superior to left ventricular ejection fraction in the prediction of a decline in renal cortical perfusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app