Add like
Add dislike
Add to saved papers

An Antibody Designed to Improve Adoptive NK-Cell Therapy Inhibits Pancreatic Cancer Progression in a Murine Model.

Natural killer (NK) cells are primary immune cells that target cancer cells and can be used as a therapeutic agent against pancreatic cancer. Despite the usefulness of NK cells, NK-cell therapy is limited by tumor cell inhibition of NK-cell homing to tumor sites, thereby preventing a sustained antitumor immune response. One approach to successful cancer immunotherapy is to increase trafficking of NK cells to tumor tissues. Here, we developed an antibody-based NK-cell-homing protein, named NK-cell-recruiting protein-conjugated antibody (NRP-body). The effect of NRP-body on infiltration of NK cells into primary and metastatic pancreatic cancer was evaluated in vitro and in murine pancreatic ductal adenocarcinoma models. The NRP-body increased NK-cell infiltration of tumors along a CXCL16 gradient (CXCL16 is cleaved from the NRP-body by furin expressed on the surface of pancreatic cancer cells). CXCL16 induced NK-cell infiltration by activating RhoA via the ERK signaling cascade. Administration of the NRP-body to pancreatic cancer model mice increased tumor tissue infiltration of transferred NK cells and reduced the tumor burden compared with that in controls. Overall survival of NRP-body-treated mice (even the metastasis models) was higher than that of mice receiving NK cells alone. In conclusion, increasing NK-cell infiltration into tumor tissues improved response to this cancer immunotherapy. The combination of an NRP-body with NK-cell therapy might be useful for treating pancreatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app