JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Histone demethylase KDM3B regulates the transcriptional network of cell-cycle genes in hepatocarcinoma HepG2 cells.

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most lethal cancer worldwide. Although gene mutations associated with HCC development have been intensively studied, how epigenetic factors specifically modulate the functional properties of HCC by regulating target gene expression is unclear. Here we demonstrated the overexpression of KDM3B in liver tissue of HCC patients using public RNA-seq data. Ablation of KDM3B by CRISPR/Cas9 retarded the cell cycle and proliferation of hepatocarcinoma HepG2 cells. Approximately 30% of KDM3B knockout cells exhibited mitotic spindle multipolarity as a chromosome instability (CIN) phenotype. RNA-seq analysis of KDM3B knockout revealed significantly down-regulated expression of cell cycle related genes, especially cell proliferation factor CDC123. Furthermore, the expression level of Cyclin D1 was reduced in KDM3B knockout by proteosomal degradation without any change in the expression of CCND1, which encodes Cyclin D1. The results implicate KDM3B as a crucial epigenetic factor in cell cycle regulation that manipulates chromatin dynamics and transcription in HCC, and identifies a potential gene therapy target for effective treatment of HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app