Add like
Add dislike
Add to saved papers

Novel Findings about Double-Loaded Curcumin-in-HPβcyclodextrin-in Liposomes: Effects on the Lipid Bilayer and Drug Release.

Pharmaceutics 2018 December 4
In this study, the encapsulation of curcumin (Cur) in "drug-in-cyclodextrin-in-liposomes (DCL)" by following the double-loading technique (DL) was proposed, giving rise to DCL⁻DL. The aim was to analyze the effect of cyclodextrin (CD) on the physicochemical, stability, and drug-release properties of liposomes. After selecting didodecyldimethylammonium bromide (DDAB) as the cationic lipid, DCL⁻DL was formulated by adding 2-hydroxypropyl-α/β/γ-CD (HPβCD)⁻Cur complexes into the aqueous phase. A competitive effect of cholesterol (Cho) for the CD cavity was found, so cholesteryl hemisuccinate (Chems) was used. The optimal composition of the DCL⁻DL bilayer was obtained by applying Taguchi methodology and regression analysis. Vesicles showed a lower drug encapsulation efficiency compared to conventional liposomes (CL) and CL containing HPβCD in the aqueous phase. However, the presence of HPβCD significantly increased vesicle deformability and Cur antioxidant activity over time. In addition, drug release profiles showed a sustained release after an initial burst effect, fitting to the Korsmeyer-Peppas kinetic model. Moreover, a direct correlation between the area under the curve (AUC) of dissolution profiles and flexibility of liposomes was obtained. It can be concluded that these "drug-in-cyclodextrin-in-deformable" liposomes in the presence of HPβCD may be a promising carrier for increasing the entrapment efficiency and stability of Cur without compromising the integrity of the liposome bilayer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app