Add like
Add dislike
Add to saved papers

Fabrication of Macroporous Biomorphic SiC from Cellulose Nanofibers Aerogel.

Materials 2018 November 31
The biomorphic Silicon Carbide (BioSiC) ceramic with highly interconnected porous three-dimensional (3D) structure was fabricated by utilizing balsa wood cellulose nanofibers aerogel as the biotemplate and polycarbosilane (PCS) as the preceramic precursor. Evolution of morphology, composition, and pore properties from untreated wood to porous BioSiC was investigated systemically. The shrinkage and weight gain during pyrolysis was discussed. It was found that the structure of as-synthesized BioSiC was related to the microstructure of wood aerogel template and the concentration of PCS precursor. The proper microstructure of cellulose skeleton which was essential for the infiltration process could obtained by removing lignin and hemicellulose appropriately. The optimum PCS content was 40 wt. % for easy infiltration and proper SiC content. The results revealed that the dredged skeleton of cellulose was reproduced perfectly by PCS ceramization. The obtained BioSiC presented high porosity (61.03%) and low density (0.86 g/cm³) with good Darcy permeability (19.22 mD).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app