Add like
Add dislike
Add to saved papers

DNA recognition by linear indole-biphenyl DNA minor groove ligands.

Biophysical Chemistry 2018 November 27
Linear heterocyclic cations are interesting DNA minor groove ligands due to their lack of isohelical curvature classically associated with groove-binding compounds. We determined the DNA binding properties of four related dications harboring a linear indole-biphenyl core: the diamidine DB1883, a ditetrahydropyrimidine derivative (DB1804), and their monocationic counterparts (DB1944 and DB2627). These compounds exhibit heterogeneity in binding in accordance with their structures. Whereas the monocations exhibit salt-sensitive 1:1 binding to the duplex 5'-CGCGAATTCGCG-3' (A2 T2 ), the dications show a marked preference for a salt-insensitive 2:1 complex. The two binding modes are differentially modulated by salt and specific non-ionic co-solutes. For both dications, 2-methyl-2,4-pentanediol enforces 1:1 binding as observed crystallographically. Fluorescence quenching studies show self-association without DNA in a relative order that is correlated with preference for the 2:1 complex. The data support a structure-binding relationship in which favorable cation-π interactions drive dimer formation via antiparallel stacking of the linear indole-biphenyl cation motif.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app