Add like
Add dislike
Add to saved papers

High-performance black phosphorus field-effect transistors with long-term air-stability.

Nano Letters 2018 December 5
Two-dimensional layered materials (2DLMs) are of considerable interest for high-performance electronic devices for their unique electronic properties and atomically thin geometry. However, the atomically thin geometry makes their electronic properties highly susceptible to the environment changes. In particular, some 2DLMs (e.g., black phosphorus (BP) and SnSe2) are unstable and could rapidly degrade over time when exposed to ambient conditions. Therefore, the development of proper passivation schemes that can preserve the intrinsic properties and enhance their lifetime represents a key challenge for these atomically thin electronic materials. Herein we introduce a simple, non-disruptive and scalable van der Waals passivation approach by using organic thin films to simultaneously improve the performance and air stability of BP field-effect transistors (FETs). We show that dioctylbenzothienobenzothiophene (C8-BTBT) thin films can be readily deposited on BP via van der Waals epitaxy approach to protect BP against oxidation in ambient conditions over 20 days. Importantly, the non-covalent van der Waals interface between C8-BTBT and BP effectively preserves the intrinsic properties of BP, allowing us to demonstrate high-performance BP FETs with a record-high current density of 920 µA/um, hole drift velocity over 1ⅹ107 cm/s, and on/off ratio of 104~107 at room temperature. This approach is generally applicable to other unstable two-dimensional (2D) materials, defining a unique pathway to modulate their electronic properties and realize high-performance devices through hybrid heterojunctions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app