JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario.

Fibrosis, cancer, and autoimmunity developing upon particle exposure have been exclusively linked with uncontrolled inflammatory processes. The critical role of inflammation is now challenged by several contradictory observations indicating that the emergence of these chronic disorders may result from non-inflammatory events. A growing number of studies reveals that micro- and nano-particles can cause exaggerated and persistent immunosuppression characterized by the release of potent anti-inflammatory cytokines (IL-10 and TGF-β), and the recruitment of major regulatory immune cells (M2 macrophages, T and B regs, and MDSC). This persistent immunosuppressive environment is initially established to limit early inflammation but contributes later to fibrosis, cancer, and infection. Immunosuppression promotes fibroblast proliferation and matrix element synthesis and subverts innate and adaptive immune surveillance against tumor cells and microorganisms. This review details the contribution of immunosuppressive cells and their derived immunoregulatory mediators and delineates the mutual role of inflammatory vs. immunosuppressive mechanisms in the pathogenesis of chronic diseases induced by particles. The consideration of these new results explains how particle-related diseases can develop independently of chronic inflammation, enriches current bioassays predicting particle toxicity and suggests new clinical strategies for treating patients affected by particle-associated diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app