Add like
Add dislike
Add to saved papers

Application of combined solid-state NMR and DFT calculations for the study of piracetam polymorphism.

Piracetam, a popular nootropic drug, widely used in the treatment of age-associated mental decline and disorders of the nervous system such as Alzheimer's disease and dementia exists under normal pressure in three polymorphic forms (P1, P2 and P3) of different stability. In this work the relative stability of piracetam polymorphs depending on the temperature was studied using the ssNMR spectroscopy combined with ab initio DFT calculations. The ssNMR spectroscopy enabled the analysis of polymorphic phase transition in the case of pure active substance as well as polymorphic form identification in the analysis of the commercial solid dosage formulations. Quantum chemical calculations of phonon density of states were performed to obtain the temperature dependence of the enthalpy, entropy and free energy of the piracetam polymorphs in a quasi-harmonic approximation. GIPAW NMR calculations combined with molecular dynamics were performed to support the chemical shift assignment. The obtained results showed that DFT calculations can be used not only to obtain the NMR parameters but also to predict the influence of the temperature on the stability order of the polymorphic forms of molecular crystals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app