Add like
Add dislike
Add to saved papers

Heart filling exceeds emptying during late ventricular systole in patients with systolic heart failure and healthy subjects - a cardiac MRI study.

BACKGROUND: Total heart volume (THV) within the pericardium is not constant throughout the cardiac cycle and THV would intuitively be lowest at end systole. We have, however, observed a phase shift between ventricular outflow and atrial inflow which causes the minimum THV to occur before end systole. The aims were to explain the mechanism of the late-systolic net inflow to the heart and determine whether this net inflow is affected by increased cardiac output or systolic heart failure.

METHODS AND RESULTS: Healthy controls (n = 21) and patients with EF<35% (n = 14) underwent magnetic resonance imaging with flow measurements in vessels to and from the heart, and this was repeated in nine controls during 140 μgram kg-1  min-1 adenosine infusion. Minimum THV occurred 78 ± 6 ms before end of systolic ejection (8 ± 1% of the cardiac cycle) in controls. The late-systolic net inflow was 12·3 ± 1·1 ml or 6·0 ± 0·5% of total stroke volume (TSV). Cardiac output increased 66 ± 8% during adenosine but late-systolic net inflow to the heart did not change (P = 0·73). In patients with heart failure, late-systolic net inflow of the heart's left side was lower (3·4 ± 0·5%) compared to healthy subjects (5·3 ± 0·6%, P = 0·03).

CONCLUSIONS: Heart size increases before end systole due to a late-systolic net inflow which is unaffected by increased cardiac output. This may be explained by inertia of blood that flows into the atria generated by ventricular systole. The lower late-systolic net inflow in patients with systolic heart failure may be a measure of decreased ventricular filling due to decreased systolic function, thus linking systolic to diastolic dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app