JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

microRNA-31 inhibition partially ameliorates the deficiency of bone marrow stromal cells from cleidocranial dysplasia.

BACKGROUND: Cleidocranial dysplasia (CCD) in humans is an autosomal-dominant skeletal dysplasia caused by heterozygous mutations of the runt-related transcription factor 2 (RUNX2) and significantly increases the risk of osteoporosis. Increasing evidence demonstrates that the dysfunction of bone marrow stromal cells from CCD patients (BMSCs-CCD) contributes to the bone deficiency, but the characteristics of BMSCs-CCD and the mechanisms that underlie their properties remain undefined.

METHODS: The clinical manifestations of three CCD patients were collected and the mutations of RUNX2 were analyzed. The properties of proliferation, osteogenesis, stemness, and senescence of BMSCs-CCD were compared with that of BMSCs from healthy donors. The expression of microRNA-31 ( miR-31) between BMSCs-CCD and BMSCs was measured and lentivirus-carried miR-31 inhibitor was used to determine the role of miR-31 in BMSCs-CCD both in vitro and in vivo. The molecular mechanisms underlying RUNX2-miR31 and miR-31 targeting stemness and senescence of BMSCs-CCD were also explored.

RESULTS: We identified two mutation sites of RUNX2 via exome sequencing from 2 of 3 Chinese CCD patients with typical clinical presentations. Compared with BMSCs from healthy donors, BMSCs-CCD displayed significantly attenuated proliferation, osteogenesis and stemness, and enhanced senescence. Meanwhile, miR-31 knockdown could ameliorate these deficiency phenotypes of BMSCs-CCD by regulating SATB2, BMI1, CDKN, and SP7. Mechanistically, RUNX2 directly repressed miR-31 expression, and therefore RUNX2 haploinsufficiency in CCD leading to miR-31 upregulation contributed to the deficiency of BMSCs-CCD. miR-31 inhibition in BMSCs-CCD showed enhanced osteogenesis through heterotopic subcutaneous implantation in the nude mice.

CONCLUSIONS: Our results show the functional deficiencies of BMSCs-CCD and a potential role of miR-31 in BMSCs-CCD deficiencies. The application of miR-31 inhibitor in BMSCs-CCD might lend hope for developing BMSC-based therapeutic approaches against CCD-associated skeletal diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app