Add like
Add dislike
Add to saved papers

Accumulation of Transposable Elements in Autosomes and Giant Sex Chromosomes of Omophoita (Chrysomelidae: Alticinae).

Coleoptera is the most diverse order among insects, and comparative molecular cytogenetic studies in this group are lacking. The species of Omophoita (Oedionychina) possess a karyotype of 2n = 22 = 10II+X+Y. They are interesting models for evolutionary cytogenetic studies due to giant sex chromosomes which are asynaptic during meiosis. Transposable elements (TEs) confer plasticity and mobility to genomes and are considered hotspots for DNA double-strand breaks and chromosomal rearrangements. The objective of the present study was to verify the role of TEs in the karyotype and in the size expansion of the giant sex chromosomes in Omophoita. Thus, different TEs were characterized in the Omophoita genome and localized in the chromosomes by fluorescence in situ hybridization (FISH). The DNA sequencing data revealed identity with TE families Tc1/Mariner and RTE/L1-56_XT. FISH showed signals of all TEs in the karyotypes and a high accumulation in the sex chromosomes of the 3 Omophoita species analyzed. These data suggest that the genome size expansion and the origin of the giant sex chromosomes of Omophoita are due to an intensive genomic invasion of TEs, as those characterized here as Tc1/Mariner-Ooc and RTE-Ooc. Differences in the chromosomal location of the TEs among the 3 species indicate that they have participated in the karyotype differentiation in Omophoita.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app