Add like
Add dislike
Add to saved papers

Facile Synthesis, Characterization and Enhanced Photocatalytic Activities of NiWO₄/Nitrogen Doped Reduced Graphene Oxide Nanocomposites.

In this study, we report the synthesis of NiWO₄/nitrogen doped reduced graphene oxide nano composite by one-pot hydrothermal method. The NiWO₄ nano particles were dispersed uniformly on graphene sheets. The as prepared NiWO₄, NiWO₄/5% rGO and NiWO₄/N-5% rGO composites were analytically characterized by Powder X-ray diffraction (XRD), Raman spectroscopy, Diffuse reflectance spectroscopy (DRS-UV), Scanning electron microscopy (SEM) and N₂ adsorption-desorption isotherm. The photocatalytic performances of the synthesized composites were evaluated towards the photo degradation of congo red (CR) under visible light radiation. The synthesized catalysts showed remarkable photocatalytic activity in the degradation of CR. Among the catalysts NiWO₄/N-5% rGO showed the highest decolourization of congo red (92%) under visible light irradiation. This high activity is attributed to its high e - transport property. Our results provide an invaluable methodology for designing high-performance photo-catalysts for new energy applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app