Add like
Add dislike
Add to saved papers

Developing an optimized strategy with transcranial direct current stimulation to enhance the endogenous pain control system in fibromyalgia.

INTRODUCTION: Fibromyalgia affects more than 5 million people in the United States and has a detrimental impact on individuals' quality of life. Current pharmacological treatments provide limited benefits to relieve the pain of fibromyalgia, along with a risk of adverse effects; a scenario that explains the increasing interest for multimodal approaches. A tailored strategy to focus on this dysfunctional endogenous pain inhibitory system is transcranial direct current stimulation (tDCS) of the primary motor cortex. By combining tDCS with aerobic exercise, the effects can be optimized. Areas covered: The relevant literature was reviewed and discussed the methodological issues for designing a mechanistic clinical trial to test this combined intervention. Also, we reviewed the neural control of different pathways that integrate the endogenous pain inhibitory system, as well as the effects of tDCS and aerobic exercise both alone and combined. In addition, potential neurophysiological assessments are addressed: conditioned pain modulation, temporal slow pain summation, transcranial magnetic stimulation, and electroencephalography in the context of fibromyalgia. Expert commentary: By understanding the neural mechanisms underlying pain processing and potential optimized interventions in fibromyalgia with higher accuracy, the field has an evident potential of advancement in the direction of new neuromarkers and tailored therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app