Add like
Add dislike
Add to saved papers

Multi-sequence myocardium segmentation with cross-constrained shape and neural network-based initialization.

For myocardial infarction (MI) patients, delayed enhancement (DE) and T2-weighted cardiovascular magnetic resonance imaging (CMR) can play significant roles in diagnosis, prognosis and therapeutic strategy evaluation. However, the non-rigid registration between different CMR sequences is particularly challenging and prevents the use of multi-sequence image analysis. In this article, we propose an approach for segmenting T2 and DE CMR simultaneously with cross-constrained shape and shape discrepancy compensation. A framework for the unified segmentation of multi-sequence images is built based on the coupled level set method. Additionally, a sparse representation-based shape model is optimized under the constraints from both sequences for complementary information sharing. Considering the myocardium shape discrepancy between the two sequences due to non-perfect registration, an error term is added to explicitly model this difference. The intensity feature is extracted with a Gaussian mixture model from each sequence. To obtain a fully automatic approach, the conditional generative adversarial network is adopted for initialization. The results are evaluated with T2 and DE images from 32 MI patients. A promising Dice similarity coefficient of the myocardium is achieved (84.97±4.15% for T2 and 78.13±6.22% for DE CMR). This approach is a pilot work toward automatic, multi-sequence CMR image analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app