Add like
Add dislike
Add to saved papers

Multimodal Brain Parcellation Based on Functional and Anatomical Connectivity.

Brain Connectivity 2018 November 31
Brain parcellation is often a prerequisite for network analysis due to the statistical challenges, computational burdens, and interpretation difficulties arising from the high dimensionality of neuroimaging data. Predominant approaches are largely unimodal with functional magnetic resonance imaging (fMRI) being the primary modality used. These approaches thus neglect other brain attributes that relate to brain organization. In this paper, we propose an approach for integrating fMRI and diffusion MRI (dMRI) data. Our approach introduces a nonlinear mapping between the connectivity values of two modalities, and adaptively balances their weighting based on their voxel-wise test-retest reliability. An efficient region level extension that additionally incorporates structural information on gyri and sulci is further presented. To validate, we compare multimodal parcellations with unimodal parcellations and existing atlases on the Human Connectome Project data. We show that multimodal parcellations achieve higher reproducibility, comparable/higher functional homogeneity, and comparable/higher leftout data likelihood. The boundaries of multimodal parcels are observed to align to those based on cyto-architecture, and subnetworks extracted from multimodal parcels matched well with established brain systems. Our results thus show that multimodal information improves brain parcellation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app