JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transgenic short-QT syndrome 1 rabbits mimic the human disease phenotype with QT/action potential duration shortening in the atria and ventricles and increased ventricular tachycardia/ventricular fibrillation inducibility.

AIMS: Short-QT syndrome 1 (SQT1) is an inherited channelopathy with accelerated repolarization due to gain-of-function in HERG/IKr. Patients develop atrial fibrillation, ventricular tachycardia (VT), and sudden cardiac death with pronounced inter-individual variability in phenotype. We generated and characterized transgenic SQT1 rabbits and investigated electrical remodelling.

METHODS AND RESULTS: Transgenic rabbits were generated by oocyte-microinjection of β-myosin-heavy-chain-promoter-KCNH2/HERG-N588K constructs. Short-QT syndrome 1 and wild type (WT) littermates were subjected to in vivo ECG, electrophysiological studies, magnetic resonance imaging, and ex vivo action potential (AP) measurements. Electrical remodelling was assessed using patch clamp, real-time PCR, and western blot. We generated three SQT1 founders. QT interval was shorter and QT/RR slope was shallower in SQT1 than in WT (QT, 147.8 ± 2 ms vs. 166.4 ± 3, P < 0.0001). Atrial and ventricular refractoriness and AP duration were shortened in SQT1 (vAPD90, 118.6 ± 5 ms vs. 154.4 ± 2, P < 0.0001). Ventricular tachycardia/fibrillation (VT/VF) inducibility was increased in SQT1. Systolic function was unaltered but diastolic relaxation was enhanced in SQT1. IKr-steady was increased with impaired inactivation in SQT1, while IKr-tail was reduced. Quinidine prolonged/normalized QT and action potential duration (APD) in SQT1 rabbits by reducing IKr. Diverse electrical remodelling was observed: in SQT1, IK1 was decreased-partially reversing the phenotype-while a small increase in IKs may partly contribute to an accentuation of the phenotype.

CONCLUSION: Short-QT syndrome 1 rabbits mimic the human disease phenotype on all levels with shortened QT/APD and increased VT/VF-inducibility and show similar beneficial responses to quinidine, indicating their value for elucidation of arrhythmogenic mechanisms and identification of novel anti-arrhythmic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app