Add like
Add dislike
Add to saved papers

A Neural Network QSPR Model for Accurate Prediction of Flash Point of Pure Hydrocarbons.

Molecular Informatics 2018 November 30
The present study introduces a QSPR model to predict the flash point of pure organic compounds from diverse chemical families. We used the Maximum-Relevance Minimum-Redundancy (MRMR) as an efficient descriptor selection algorithm to select 20 the most effective out of 1926 calculated descriptors. The selected descriptors and their combination with the normal boiling point data were used as model inputs and their correlation with FP was mapped using feedforward artificial neural networks. Studying various models, the best result was obtained by a neural network with 2 neurons in the hidden layer for which a combination of the selected descriptors and normal boiling point data were used as model inputs. Evaluating the performance of this model for a dataset of 727 compounds resulted in average absolute relative errors of of 1.36 %, 1.34 %, 1.44 % and 1.42 % and average absolute deviations of 4.48, 4.41, 4.75 and 4.66 K for the overall, training, validation, and test datasets, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app