Add like
Add dislike
Add to saved papers

"Branched tail" oxyquinoline inhibitors of HIF prolyl hydroxylase: Early Evaluation of Toxicity and Metabolism Using Liver-on-a-chip.

Drug Metabolism Letters 2018 November 29
BACKGROUND: "Branched tail" oxyquinolines, and adaptaquin in particular, are potent HIF prolyl hydroxylase inhibitors showing promising results in in vivo hemorrhagic stroke models. The further improvement of the potency resulted in identification of a number of adaptaquin analogs. Early evaluation of toxicity and metabolism is desired right at the step of lead selection.

OBJECTIVES: The aim of the study is to characterize the toxicity and metabolism of adaptaquin and its new improved analogs.

METHODS: Liver-on-a-chip technology with differentiated HepaRG cells followed by LC-MS detection of the studied compounds and metabolites of the P450 substrate-inhibitor panel for CYP2B6, CYP2C9, CYP2C19, and CYP3A4.

RESULTS: The optimized adaptaquin analogs show no toxicity up to a 100-fold increased range over EC50. The drugs are metabolized by CYP3A4 and CYP2B6 as shown with the use of the cytochrome P450 substrate-inhibitor panel designed and optimized for preclinical evaluation of drugs' in vitro biotransformation on a 3D human histotypical cell model using "liver-on-a-chip" technology. Activation of CYP2B6 with the drugs tested has been observed. A scheme for adaptaquin oxidative conversion is proposed.

CONCLUSION: The optimized adaptaquin analogs are suitable for further preclinical trials. Activation of CYP2B6 with adaptaquin and its variants points to a potential increase in Tylenol toxicity if administered together.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app