Add like
Add dislike
Add to saved papers

Robust quantification of fish early life CO 2 sensitivities via serial experimentation.

Biology Letters 2018 November 29
Despite the remarkable expansion of laboratory studies, robust estimates of single species CO2 sensitivities remain largely elusive. We conducted a meta-analysis of 20 CO2 exposure experiments conducted over 6 years on offspring of wild Atlantic silversides ( Menidia menidia ) to robustly constrain CO2 effects on early life survival and growth. We conclude that early stages of this species are generally tolerant to CO2 levels of approximately 2000 µatm, likely because they already experience these conditions on diel to seasonal timescales. Still, high CO2 conditions measurably reduced fitness in this species by significantly decreasing average embryo survival (-9%) and embryo+larval survival (-13%). Survival traits had much larger coefficients of variation (greater than 30%) than larval length or growth (3-11%). CO2 sensitivities varied seasonally and were highest at the beginning and end of the species' spawning season (April-July), likely due to the combined effects of transgenerational plasticity and maternal provisioning. Our analyses suggest that serial experimentation is a powerful, yet underused tool for robustly estimating small but true CO2 effects in fish early life stages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app