Add like
Add dislike
Add to saved papers

Multidimensional fetal flow imaging with cardiovascular magnetic resonance: a feasibility study.

PURPOSE: To image multidimensional flow in fetuses using golden-angle radial phase contrast cardiovascular magnetic resonance (PC-CMR) with motion correction and retrospective gating.

METHODS: A novel PC-CMR method was developed using an ungated golden-angle radial acquisition with continuously incremented velocity encoding. Healthy subjects (n = 5, 27 ± 3 years, males) and pregnant females (n = 5, 34 ± 2 weeks gestation) were imaged at 3 T using the proposed sequence. Real-time reconstructions were first performed for retrospective motion correction and cardiac gating (using metric optimized gating, MOG). CINE reconstructions of multidimensional flow were then performed using the corrected and gated data.

RESULTS: In adults, flows obtained using the proposed method agreed strongly with those obtained using a conventionally gated Cartesian acquisition. Across the five adults, bias and limits of agreement were - 1.0 cm/s and [- 5.1, 3.2] cm/s for mean velocities and - 1.1 cm/s and [- 6.5, 4.3] cm/s for peak velocities. Temporal correlation between corresponding waveforms was also high (R~ 0.98). Calculated timing errors between MOG and pulse-gating RR intervals were low (~ 20 ms). First insights into multidimensional fetal blood flows were achieved. Inter-subject consistency in fetal descending aortic flows (n = 3) was strong with an average velocity of 27.1 ± 0.4 cm/s, peak systolic velocity of 70.0 ± 1.8 cm/s and an intra-class correlation coefficient of 0.95 between the velocity waveforms. In one fetal case, high flow waveform reproducibility was demonstrated in the ascending aorta (R = 0.97) and main pulmonary artery (R = 0.99).

CONCLUSION: Multidimensional PC-CMR of fetal flow was developed and validated, incorporating retrospective motion compensation and cardiac gating. Using this method, the first quantification and visualization of multidimensional fetal blood flow was achieved using CMR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app