Add like
Add dislike
Add to saved papers

MRI Brain Tumour Segmentation Using Hybrid Clustering and Classification by Back Propagation Algorithm

Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image segmentation is the challenging task in medical applications, due to contrary image, local observations of an image, noise image, non uniform texture of the images and so on. Many techniques are available for image segmentation, but still it requires to introduce an efficient, fast medical image segmentation methods. This research article introduces an efficient image segmentation method based on K means clustering integrated with a spatial Fuzzy C means clustering algorithms. The suggested technique combines the advantages of the two methods. K means segmentation requires minimum computation time, but spatial Fuzzy C means provides high accuracy for image segmentation. The performance of the proposed method is evaluated in terms of accuracy, PSNR and processing time. It also provides good implementation results for MRI brain image segmentation with high accuracy and minimal execution time. After completing the segmentation the of abnormal part of the input MRI brain image, it is compulsory to classify the image is normal or abnormal. There are many classifiers like a self organizing map, Back propagation algorithm, support vector machine etc., The algorithm helps to classify the abnormalities like benign or malignant brain tumour in case of MRI brain image. The abnormality is detected based on the extracted features from an input image. Discrete wavelet transform helps to find the hidden information from the MRI brain image. The extracted features are trained by Back Propagation Algorithm to classify the abnormalities of MRI brain image.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app