Add like
Add dislike
Add to saved papers

Simulation of retinal ganglion cell response using fast independent component analysis.

Advances in neurobiology suggest that neuronal response of the primary visual cortex to natural stimuli may be attributed to sparse approximation of images, encoding stimuli to activate specific neurons although the underlying mechanisms are still unclear. The responses of retinal ganglion cells (RGCs) to natural and random checkerboard stimuli were simulated using fast independent component analysis. The neuronal response to stimuli was measured using kurtosis and Treves-Rolls sparseness, and the kurtosis, lifetime and population sparseness were analyzed. RGCs exhibited significant lifetime sparseness in response to natural stimuli and random checkerboard stimuli. About 65 and 72% of RGCs do not fire all the time in response to natural and random checkerboard stimuli, respectively. Both kurtosis of single neurons and lifetime response of single neurons values were larger in the case of natural than in random checkerboard stimuli. The population of RGCs fire much less in response to random checkerboard stimuli than natural stimuli. However, kurtosis of population sparseness and population response of the entire neurons were larger with natural than random checkerboard stimuli. RGCs fire more sparsely in response to natural stimuli. Individual neurons fire at a low rate, while the occasional "burst" of neuronal population transmits information efficiently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app