Add like
Add dislike
Add to saved papers

Comparing advanced graph-theoretical parameters of the connectomes of the lobes of the human brain.

Deep, classical graph-theoretical parameters, like the size of the minimum vertex cover, the chromatic number, or the eigengap of the adjacency matrix of the graph were studied widely by mathematicians in the last century. Most researchers today study much simpler parameters of braingraphs or connectomes which were defined in the last twenty years for enormous networks-like the graph of the World Wide Web-with hundreds of millions of nodes. Since the connectomes, describing the connections of the human brain, typically contain several hundred vertices today, one can compute and analyze the much deeper, harder-to-compute classical graph parameters for these, relatively small graphs of the brain. This deeper approach has proven to be very successful in the comparison of the connectomes of the sexes in our earlier works: we have shown that graph parameters, deeply characterizing the graph connectivity are significantly better in women's connectomes than in men's. In the present contribution we compare numerous graph parameters in the three largest lobes-frontal, parietal, temporal-and in both hemispheres of the human brain. We apply the diffusion weighted imaging data of 423 subjects of the NIH-funded Human Connectome Project, and present some findings, never described before, including that the right parietal lobe contains significantly more edges, has higher average degree, density, larger minimum vertex cover and Hoffman bound than the left parietal lobe. Similar advantages in the deep graph connectivity properties are held for the left frontal versus the right frontal and the right temporal versus the left temporal lobes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app