Add like
Add dislike
Add to saved papers

Tardigrade indexing approach on exoplanets.

Finding life on other worlds is a fascinating area of astrobiology and planetary sciences. Presently, over 3800 exoplanets, representing a very wide range of physical and chemical environments, are known. Scientists are not only looking for traces of life outside Earth, but they are also trying to find out which of Earth's known organisms (ex: tardigrades (water bears)) would be able to survive on other planets. In our study, we have established a metric tool for distinguishing the potential survivability of active and cryptobiotic tardigrades on rocky-water and water-gas planets in our solar system and exoplanets, taking into consideration the geometrical means of six physical parameters such as radius, density, escape velocity, revolution period, surface temperature, and surface pressure of the considered planets. More than 3800 exoplanets are available as the main sample from Planetary Habitable Laboratory - Exoplanet Catalog (PHL-EC), from which we have chosen 57 exoplanets in our study including Earth and Mars, with water composition as reference. The Active Tardigrade Index (ATI) and Cryptobiotic Tardigrade Index (CTI) are two metric indices with minimum value 0 (= tardigrades cannot survive) and maximum 1 (= tardigrades will survive in their respective state). Values between 0 and 1 indicate a percentage chance of the active or cryptobiotic tardigrades surviving on a given exoplanet. Among known planets some of the exoplanets are tabulated as ATI and CTI indices for sample representation like: Kepler-100d, Kepler-48d, Kepler-289b, TRAPPIST-1 f and Kepler-106e. The results with Mars as the threshold indicates that Mars could be the only rock-water composition planet that could be more suitable for tardigrades than other considered exoplanets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app