Add like
Add dislike
Add to saved papers

3D self-supported Ni(PO 3 ) 2 -MoO 3 nanorods anchored on nickel foam for highly efficient overall water splitting.

Nanoscale 2018 November 28
Electrolyzing water as a sustainable energy source is a promising and appealing method to resolve the environmental crisis. Developing efficient and stable bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is crucial and challenging in the overall water splitting process. Herein, we report the synthesis of Ni(PO3)2-MoO3 nanorods anchored on nickel foam (Ni(PO3)2-MoO3/NF) within a two-step strategy and their application as a bifunctional water splitting electrocatalyst. The results show that the optimal Ni(PO3)2-MoO3/NF electrodes exhibit superior catalytic activity with robust durability and ultralow overpotentials of 86 mV for HER and 234 mV for OER to achieve 10 mA cm-2 (η10) in alkaline solution. The favorable performance of the obtained catalyst is attributed mainly to the synergetic effect between Ni(PO3)2 and MoO3, as well as the self-supporting porous conductive substrate. As a result, the integrated Ni(PO3)2-MoO3/NF electrodes deliver η10 at a small potential of 1.47 V for overall water splitting, highlighting a promising application as a bifunctional electrocatalyst.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app