Add like
Add dislike
Add to saved papers

Graph theory analysis reveals how sickle cell disease impacts neural networks of patients with more severe disease.

NeuroImage : Clinical 2018 November 15
Sickle cell disease (SCD) is a hereditary blood disorder associated with many life-threatening comorbidities including cerebral stroke and chronic pain. The long-term effects of this disease may therefore affect the global brain network which is not clearly understood. We performed graph theory analysis of functional networks using non-invasive fMRI and high resolution EEG on thirty-one SCD patients and sixteen healthy controls. Resting state data were analyzed to determine differences between controls and patients with less severe and more severe sickle cell related pain. fMRI results showed that patients with higher pain severity had lower clustering coefficients and local efficiency. The neural network of the more severe patient group behaved like a random network when performing a targeted attack network analysis. EEG results showed the beta1 band had similar results to fMRI resting state data. Our data show that SCD affects the brain on a global level and that graph theory analysis can differentiate between patients with different levels of pain severity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app