Add like
Add dislike
Add to saved papers

Should I stay, or should I go: Modeling optimal flight initiation distance in nesting birds.

Flight initiation distance (FID)-the distance at which an individual leaves in response to the approach of a perceived threat-provides a measurement of risk-taking behavior. If individuals optimize their FID, this distance should reflect the point at which the fitness resulting from leaving exceeds the fitness resulting from all other possible decisions. Previous theory of FID has often been aimed at explaining this behavior in foraging individuals. Yet flight initiation in response to approaching threats occurs in a range of contexts that might influence optimal behavior. In breeding individuals, risk-taking decisions that are made at a location of offspring care (e.g., a nest or den) can have significant effects on fitness. Here, we develop a theoretical model of distances at which a parent bird flushes from a nest in response to an approaching threat. We estimate parent fitness with regards to characteristics of the parent (reproductive values, detection distance, and cost of lost parental care cost), the nest (concealment and accessibility), and the approaching predator (detection capability and predation success), developing a dichotomous scenario between staying at the nest or leaving at varying distances. Using a generalized comparison of the benefits of leaving versus staying, we find that increasing costs of lost parental care, probability of predation of the parent due to fleeing, or current reproductive value lead to more instances of staying at the nest. In a complementary approach with specified parameters based on biologically-informed factors that likely influence a predator-prey encounter, we find that increasing the current reproductive value, concealment of the nest, or costs of lost parental care decrease optimal FID and can lead to the parent staying at the nest. Other factors, such as increasing residual reproductive value, predation success, and predator capability of detecting the nest, increase optimal FID with some instances of costs of fleeing being so great that staying becomes an optimal strategy. Our theory provides a framework to explain variation in FID among nesting species and individuals and could provide a foundation for future empirical investigations of risk-taking behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app