Add like
Add dislike
Add to saved papers

GC-MS metabolite profiling for specific detection of dwarf somaclonal variation in banana plants.

Premise of the Study: The production of banana ( Musa spp.; Musaceae) plants is affected by various types of somaclonal variations (SV), including dwarfism. However, methods for specific detection of SV are still scarce. To overcome this, a metabolite-based method for detection of dwarf variants was evaluated.

Methods: The gas chromatography-mass spectrometry (GC-MS) metabolite profile of dwarf banana variants was investigated and compared to that of normal-healthy (N) and cucumber mosaic virus (CMV)-infected plants using principal components analysis and partial least squares discriminant analysis (PLS-DA).

Results: Significant differences among the sample groups were observed in 82 metabolites. Rhamnose was exclusively present in dwarf plants but allothreonine and trehalose were present in all but SV samples. Cellobiose was only detected in N plants, while 45 other metabolites, including methyl-glucopyranoside, allopyranose, lactose, phenylalanine, and l-lysine were detected in all but CMV-infected samples. PLS-DA models were able to detect SV, CMV, and N plants with 100% accuracy and specificity.

Discussion: The GC-MS metabolite profile can be used for the rapid, specific detection of SV at early plant production stages. This is the first metabolite-based characterization and detection of somaclonal variation in plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app