Add like
Add dislike
Add to saved papers

Photoacoustic Imaging of Embryonic Stem Cell-Derived Cardiomyocytes in Living Hearts with Ultrasensitive Semiconducting Polymer Nanoparticles.

The last decade has seen impressive progress in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) that makes them ideal tools to repair injured hearts. To achieve an optimal outcome, advanced molecular imaging methods are essential to accurately track these transplanted cells in the heart. Herein, we demonstrate for the first time that a class of photoacoustic nanoparticles (PANPs) incorporating semiconducting polymers (SPs) as contrast agents can be used in the photoacoustic imaging (PAI) of transplanted hESC-CMs in living mouse hearts. This is achieved by virtue of two benefits of PANPs. First, strong PA signals and specific spectral features of SPs allow PAI to sensitively detect and distinguish a small number of PANP-labeled cells (2,000) from background tissues in vivo . Second, the PANPs show a high efficiency for hESC-CM labeling without adverse effects on cell structure, function, and gene expression. Assisted by ultrasound imaging, the delivery and engraftment of hESC-CMs in living mouse hearts can be assessed by PANP-based PAI with high spatial resolution (~100 μm). In summary, this study explores and validates a novel application of SPs as a PA contrast agent to track labeled cells with high sensitivity and accuracy in vivo , highlighting the advantages of integrating PAI and PANPs to advance cardiac regenerative therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app