Add like
Add dislike
Add to saved papers

Probing drug-DNA interactions using super-resolution force spectroscopy.

Applied Physics Letters 2018 November 6
Atomic magnetometry and ultrasound, as individual techniques, have been used extensively in various physical, chemical, and biomedical fields. Their combined application, however, has been rare. We report that super-resolution force spectroscopy, which is based on the integration of the two techniques, can find unique biophysical applications in studying drug-DNA interactions. The precisely controlled ultrasound generates acoustic radiation force on the biological systems labeled with magnetic microparticles. A decrease in the magnetic signal, measured by an automated atomic magnetometer, indicates that the acoustic radiation force equals the binding force of the biological system. With 0.5 pN force resolution, we were able to precisely resolve three small molecules binding with two DNA sequences and quantitatively reveal the effect of a single hydrogen bond. Our results indicate that the increases in DNA binding force caused by drug binding correlate with the enthalpy instead of free energy, thus providing an alternative physical parameter for optimizing chemotherapeutic drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app