Add like
Add dislike
Add to saved papers

MAP9 single nucleotide polymorphism rs1058992 is a risk of EBV-associated gastric carcinoma in Chinese population.

Microtubule-associated protein 9 (MAP9) is a mitosis-associated protein involved in bipolar spindle assembly. Following DNA damage, MAP9 stabilizes p53 via p300 and MDM2 (mouse double minute-2 homolog). The dysregulation of MAP9 was considered to be associated with tumorigenesis. Single nucleotide polymorphisms (SNPs) in key genes governing mitosis may particularly increase susceptibility to gastric carcinoma (GC). Our study demonstrated that the CC homozygous genotype of SNP rs1058992 located in the MAP9 gene was significantly correlated with EBV-associated GC (EBVaGC) in a recessive genetic model (OR = 2.558, 95% CI = 1.306-5.010, P = 0.043), and the C allele frequency of rs1058992 also showed significant correlation with EBVaGC (OR = 1.904, 95% CI = 1.141-3.179, P = 0.013). These results suggest that the MAP9 rs1058992 polymorphism is associated with risk of EBVaGC. The conversion of lysine to arginine caused by rs1058992 may affect development of EBVaGC; however, further studies in larger populations are needed to fully elucidate its role in EBVaGC. Keywords: SNP; EBV; gastric carcinoma; MAP9.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app