Add like
Add dislike
Add to saved papers

MOTS-c improves osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells via TGF-β/Smad pathway.

OBJECTIVE: To explore whether MOTS-c could improve osteoporosis by promoting osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs) via transforming growth factor-β (TGF-β)/Smad pathway.

MATERIALS AND METHODS: Rat BMSCs were isolated and cultured, followed by osteogenic and lipid differentiation. CCK-8 (cell counting kit-8) assay was performed to detect the highest treatment dose of MOTS-c that did not affect cell proliferation. Expressions of osteogenesis-related genes (ALP, Bglap, and Runx2) were detected by qRT-PCR (quantitative Real-Time Polymerase Chain Reaction) and Western blot, respectively. Alizarin red staining and alkaline phosphatase (ALP) cytochemical staining were carried out to evaluate the effect of MOTS-c on BMSCs osteogenesis. TGF-β/Smad pathway-related genes (TGF-β1, TGF-β2, and Smad7) in BMSCs treated with MOTS-c were detected. Finally, TGF-β1 was knocked down to investigate the regulatory effect of MOTS-c on BMSCs osteogenesis.

RESULTS: BMSCs exhibited an elongated morphology and was identified with a high purity by flow cytometry. After osteogenic differentiation, alizarin red staining and ALP staining were all positive. MOTS-c treatment could remarkably stimulate the formation of calcified nodules in BMSCs. Besides, TGF-β/Smad pathway-related genes were significantly upregulated after BMSCs were treated with MOTS-c. Promoted osteogenesis by MOTS-c treatment was reversed by the TGF-β1 knockdown.

CONCLUSIONS: MOTS-c promotes cell differentiation of BMSCs to osteoblasts via TGF-β/Smad pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app