Add like
Add dislike
Add to saved papers

Persistent DNA methylation changes in zebrafish following graphene quantum dots exposure in surface chemistry-dependent manner.

Modified nano-graphene quantum dots (M-GQDs) are widely used in bioimaging, drug delivery, and chemical engineering. Because M-GQDs could induce reactive oxygen species and DNA damage, we hypothesized that M-GQDs modulate DNA methylation. To test this hypothesis, zebrafish were exposed to reduced, hydroxylated, or aminated GQDs (graphene quantum dots) at different concentrations for 7 days; global DNA methylation in liver, gill, and intestine was then studied. M-GQDs induced global DNA hypermethylation in various tissues in a dose-dependent manner. The global DNA methylation of reduced and aminated GQDs exposure showed a significant increase in intestines even at low concentrations (2 mg/L), suggesting that intestines are the main target for these two M-GQDs. The effects of global DNA methylation were evaluated 14 days after exposure had ceased. DNA methylation in the livers of exposure groups was significantly higher than in control zebrafish. Global DNA methylation increased in livers of zebrafish even after exposure to aminated GQDs (2 mg/L) had ceased, indicating a more complex mechanism of DNA methylation deregulation. The present results showed that chemical groups in the surface of GQDs are a critical factor for modulating DNA methylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app