Add like
Add dislike
Add to saved papers

RA-839, a selective agonist of Nrf2/ARE pathway, exerts potent anti-rotaviral efficacy in vitro.

Antiviral Research 2018 November 20
Acute watery diarrhea due to Rotavirus (RV) infection is associated with high infantile morbidity and mortality in countries with compromised socio-economic backgrounds. Although showing promising trends in developed countries, the efficacy of currently licensed RV vaccines is sub-optimal in socio-economically poor settings with high disease burden. Currently, there are no approved anti-rotaviral drugs adjunct to classical vaccination program. Interestingly, dissecting host-rotavirus interaction has yielded novel, non-mutable host determinants which can be subjected to interventions by selective small molecules. The present study was undertaken to evaluate the anti-RV potential of RA-839, a recently discovered small molecule with potent and highly selective agonistic activity towards cellular redox stress-sensitive Nuclear factor erytheroid-derived-2-like 2 (Nrf2)/Antioxidant Response Element (ARE) pathway. In vitro studies revealed that RA-839 inhibits RV RNA and protein expression, viroplasm formation, yield of virion progeny and virus-induced cytopathy independent of RV strains, RV-permissive cell lines and without bystander cytotoxicity. Anti-RV potency of RA-839 was subsequently identified to be independent of stochastic Interferon (IFN) stimulation but to be dependent on RA-839's ability to stimulate Nrf2/ARE signaling. Interestingly, anti-rotaviral effects of RA-839 were also mimicked by 2-Cyano-3, 12-dioxo-oleana-1, 9(11)-dien-28-oic acid methyl ester (CDDO-Me) and Hemin, two classical pharmacological activators of Nrf2/ARE pathway. Overall, this study highlights that RA-839 is a potent antagonist of RV propagation in vitro and can be developed as anti-rotaviral therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app