Add like
Add dislike
Add to saved papers

Fast and accurate vision-based stereo reconstruction and motion estimation for image-guided liver surgery.

Image-guided liver surgery aims to enhance the precision of resection and ablation by providing fast localisation of tumours and adjacent complex vasculature to improve oncologic outcome. This Letter presents a novel end-to-end solution for fast stereo reconstruction and motion estimation that demonstrates high accuracy with phantom and clinical data. The authors' computationally efficient coarse-to-fine (CTF) stereo approach facilitates liver imaging by accounting for low texture regions, enabling precise three-dimensional (3D) boundary recovery through the use of adaptive windows and utilising a robust 3D motion estimator to reject spurious data. To the best of their knowledge, theirs is the only adaptive CTF matching approach to reconstruction and motion estimation that registers time series of reconstructions to a single key frame for registration to a volumetric computed tomography scan. The system is evaluated empirically in controlled laboratory experiments with a liver phantom and motorised stages for precise quantitative evaluation. Additional evaluation is provided through testing with patient data during liver resection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app