Add like
Add dislike
Add to saved papers

Progress in ligand design for monolayer-protected nanoparticles for nanobio interfaces.

Biointerphases 2018 November 22
Ligand-functionalized inorganic nanoparticles, also known as monolayer-protected nanoparticles, offer great potential as vehicles for in vivo delivery of drugs, genes, and other therapeutics. These nanoparticles offer highly customizable chemistries independent of the size, shape, and functionality imparted by the inorganic core. Their success as drug delivery agents depends on their interaction with three major classes of biomolecules: nucleic acids, proteins, and membranes. Here, the authors discuss recent advances and open questions in the field of nanoparticle ligand design for nanomedicine, with a focus on atomic-scale interactions with biomolecules. While the importance of charge and hydrophobicity of ligands for biocompatibility and cell internalization has been demonstrated, ligand length, flexibility, branchedness, and other properties also influence the properties of nanoparticles. However, a comprehensive understanding of ligand design principles lies in the cost associated with synthesizing and characterizing diverse ligand chemistries and the ability to carefully assess the structural integrity of biomolecules upon interactions with nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app