Add like
Add dislike
Add to saved papers

A Chemical Approach to Optimizing Bioactive Glass Dental Composites.

The chemical microenvironment surrounding dental composites plays a crucial role in controlling the bacteria grown on these specialized surfaces. In this study, we report a scanning electrochemical microscopy (SECM)-based analytic technique to design and optimize metal ion-releasing bioactive glass (BAG) composites, which showed a significant reduction in biofilm growth. SECM allows positioning of the probe without touching the substrate while mapping the chemical parameters in 3-dimensional space above the substrate. Using SECM and a solid-state H+ and Ca2+ ion-selective microprobe, we determined that the local Ca2+ concentration released by different composites was 10 to 224 µM for a BAG particle size of <5 to 150 µm in the presence of artificial saliva at pH 4.5. The local pH was constant above the composites in the same saliva solution. The released amount of Ca2+ was determined to be maximal for particles <38 µm and a BAG volume fraction of 0.32. This optimized BAG-resin composite also showed significant inhibition of biofilm growth (24 ± 5 µm) in comparison with resin-only composites (53 ± 6 µm) after Streptococcus mutans bacteria were grown for 3 d in a basal medium mucin solution. Biofilm morphology and its subsequent volume, as determined by the SECM imaging technique, was (0.59 ± 0.38) × 107 µm3 for BAG-resin composites and (1.29 ± 0.53) × 107 µm3 for resin-only composites. This study thus lays the foundation for a new analytic technique for designing dental composites that are based on the chemical microenvironment created by biomaterials to which bacteria have been exposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app