Add like
Add dislike
Add to saved papers

Impediment of selenite-induced cataract in rats by combinatorial drug laden liposomal preparation.

Cataract is the leading cause of blindness globally with surgery being the only form of treatment. But cataract surgery is accompanied by complications, chiefly intra-ocular infections. Hence, preventive nanoformulations may be extremely beneficial. In the present study, novel chitosan-coated liposomal formulations encapsulating a combination of drugs, lanosterol and hesperetin were prepared and characterized. The combinatorial liposomes were prepared by thin film evaporation active extrusion method. The characterization of liposomes was done by transmission electron microscopy, zeta potential, encapsulation efficiency, stability, cytotoxicity and in vitro release studies. The main difference between the chitosan-coated and uncoated combinatorial liposomes is the release of drugs as indicated by the in vitro release studies. The slow and sustained release of the drugs from chitosan-coated ones as against the burst release from uncoated indicates an increased retention time for combinatorial drugs in cornea. This leads to a delay in progression of cataract as seen from in vivo studies. Cytotoxicity studies indicate no cell toxicity of the coating of chitosan or the combination of drugs. Stability studies indicate that there were almost no changes in size, zeta potential and polydispersity index values of the combinatorial liposomes upon storage at room temperature for 60 days. Another important study is the estimation of antioxidant defense system. The estimated values of glutathione reductase, malondialdehyde and chief antioxidant enzymes point toward an upregulation of antioxidant defense system. From the results, it may be concluded that novel chitosan-coated combinatorial liposomes are effective in delaying or preventing of cataract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app